You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

641 lines
20 KiB

Active Record
=============
Active Record implements the [Active Record design pattern](http://en.wikipedia.org/wiki/Active_record).
The premise behind Active Record is that an individual [[ActiveRecord]] object is associated with a specific row in a database table. The object's attributes are mapped to the columns of the corresponding table. Therefore, referencing an Active Record attribute is equivalent to accessing
the corresponding table column for that record.
For example, say that the `Customer` ActiveRecord class is associated with the
`tbl_customer` table. This would mean that the class's `name` attribute is automatically mapped to the `name` column in `tbl_customer`.
Thanks to Active Record, assuming the variable `$customer` is an object of type `Customer`, to get the value of the `name` column for the table row, you can simply use the expression `$customer->name`. In this example, Active Record is providing an object-oriented way to access data stored in the database, just as you would access any object property. But Active Record provides much more functionality than this.
With Active Record, instead of writing raw SQL statements to perform database queries, you can call intuitive methods to achieve the same goals. For example, calling [[ActiveRecord::save()|save()]] would perform an INSERT or UPDATE query, creating or updating a row in the associated table of the ActiveRecord class:
```php
$customer = new Customer();
$customer->name = 'Qiang';
11 years ago
$customer->save(); // a new row is inserted into tbl_customer
```
Declaring ActiveRecord Classes
------------------------------
To declare an ActiveRecord class you need to extend [[\yii\db\ActiveRecord]] and
implement the `tableName` method:
```php
11 years ago
use yii\db\ActiveRecord;
class Customer extends ActiveRecord
{
/**
* @return string the name of the table associated with this ActiveRecord class.
*/
public static function tableName()
{
return 'tbl_customer';
}
}
```
Connecting to the Database
----------------------
ActiveRecord relies on a [[Connection|DB connection]] to perform the underlying DB operations.
By default, ActiveRecord assumes that there is an application component named `db` which provides the needed
[[Connection]] instance. Usually this component is configured in application configuration file:
```php
return array(
'components' => array(
'db' => array(
'class' => 'yii\db\Connection',
'dsn' => 'mysql:host=localhost;dbname=testdb',
'username' => 'demo',
'password' => 'demo',
),
),
);
```
Please read the [Database basics](database-basics.md) section to learn more on how to configure
and use database connections.
> Tip: To use a different database connection, you need to override the [[ActiveRecord::getDb()]] method. To do that, create a base class that extends ActiveRecord. In the base class, override the [[ActiveRecord::getDb()]] method. Then extend your new base class for all of your ActiveRecord classes that need to use the same alternative database connection.
Querying Data from the Database
11 years ago
---------------------------
11 years ago
There are two ActiveRecord methods for querying data from database:
11 years ago
- [[ActiveRecord::find()]]
- [[ActiveRecord::findBySql()]]
Both methods return an [[ActiveQuery]] instance, which extends from [[Query]] thus supporting
the same set of flexible and powerful DB query methods. The followings examples demonstrate some of the possibilities.
```php
// to retrieve all *active* customers and order them by their ID:
$customers = Customer::find()
->where(array('status' => $active))
->orderBy('id')
->all();
// to return a single customer whose ID is 1:
$customer = Customer::find(1);
// the above code is equivalent to the following:
$customer = Customer::find()
->where(array('id' => 1))
->one();
// to retrieve customers using a raw SQL statement:
$sql = 'SELECT * FROM tbl_customer';
$customers = Customer::findBySql($sql)->all();
// to return the number of *active* customers:
$count = Customer::find()
->where(array('status' => $active))
->count();
// to return customers in terms of arrays rather than `Customer` objects:
11 years ago
$customers = Customer::find()
->asArray()
->all();
// each element of $customers is an array of name-value pairs
// to index the result by customer IDs:
$customers = Customer::find()->indexBy('id')->all();
// $customers array is indexed by customer IDs
```
Accessing Column Data
---------------------
ActiveRecord maps each column of the corresponding database table row to an *attribute* in the ActiveRecord
object. The attribute behaves like any regular object public property. The attribute's name will be the same as the corresponding column
name, and is case-sensitive.
To read the value of a column, you can use the following syntax:
```php
// "id" is the name of a column in the table associated with $customer ActiveRecord object
$id = $customer->id;
// or alternatively,
$id = $customer->getAttribute('id');
```
11 years ago
You can get all column values through the [[ActiveRecord::attributes]] property:
```php
$values = $customer->attributes;
```
Manipulating Data in the Database
11 years ago
-----------------------------
12 years ago
ActiveRecord provides the following methods to insert, update and delete data in the database:
11 years ago
- [[ActiveRecord::save()|save()]]
- [[ActiveRecord::insert()|insert()]]
- [[ActiveRecord::update()|update()]]
- [[ActiveRecord::delete()|delete()]]
- [[ActiveRecord::updateCounters()|updateCounters()]]
- [[ActiveRecord::updateAll()|updateAll()]]
- [[ActiveRecord::updateAllCounters()|updateAllCounters()]]
- [[ActiveRecord::deleteAll()|deleteAll()]]
Note that [[ActiveRecord::updateAll()|updateAll()]], [[ActiveRecord::updateAllCounters()|updateAllCounters()]]
and [[ActiveRecord::deleteAll()|deleteAll()]] are static methods and apply to the whole database
table, while the other methods only apply to the row associated with the ActiveRecord object through which the method is being called.
```php
// to insert a new customer record
$customer = new Customer;
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save(); // equivalent to $customer->insert();
// to update an existing customer record
$customer = Customer::find($id);
$customer->email = 'james@example.com';
$customer->save(); // equivalent to $customer->update();
// to delete an existing customer record
$customer = Customer::find($id);
$customer->delete();
11 years ago
// to increment the age of ALL customers by 1
Customer::updateAllCounters(array('age' => 1));
```
11 years ago
Querying Relational Data
------------------------
11 years ago
You can use ActiveRecord to query the relational data of a table. The relational data returned can
be accessed like a property of the ActiveRecord object associated with the primary table.
For example, with an appropriate relation declaration, by accessing `$customer->orders` you may obtain
an array of `Order` objects which represent the orders placed by the specified customer.
11 years ago
To declare a relation, define a getter method which returns an [[ActiveRelation]] object. For example,
```php
class Customer extends \yii\db\ActiveRecord
{
public function getOrders()
{
return $this->hasMany('Order', array('customer_id' => 'id'));
}
}
class Order extends \yii\db\ActiveRecord
{
public function getCustomer()
{
return $this->hasOne('Customer', array('id' => 'customer_id'));
}
}
```
11 years ago
The methods [[ActiveRecord::hasMany()]] and [[ActiveRecord::hasOne()]] used in the above
are used to model the many-one relationship and one-one relationship in a relational database.
For example, a customer has many orders, and an order has one customer.
Both methods take two parameters and return an [[ActiveRelation]] object:
11 years ago
- `$class`: the name of the class of the related model(s). If specified without
a namespace, the namespace of the related model class will be taken from the declaring class.
- `$link`: the association between columns from the two tables. This should be given as an array.
The keys of the array are the names of the columns from the table associated with `$class`,
while the values of the array are the names of the columns from the declaring class.
It is a good practice to define relationships based on table foreign keys.
11 years ago
After declaring relations, getting relational data is as easy as accessing a component property
that is defined by the corresponding getter method:
```php
11 years ago
// get the orders of a customer
$customer = Customer::find(1);
$orders = $customer->orders; // $orders is an array of Order objects
11 years ago
```
Behind the scene, the above code executes the following two SQL queries, one for each line of code:
11 years ago
```sql
SELECT * FROM tbl_customer WHERE id=1;
SELECT * FROM tbl_order WHERE customer_id=1;
```
11 years ago
> Tip: If you access the expression `$customer->orders` again, will it perform the second SQL query again?
Nope. The SQL query is only performed the first time when this expression is accessed. Any further
accesses will only return the previously fetched results that are cached internally. If you want to re-query
the relational data, simply unset the existing one first: `unset($customer->orders);`.
Sometimes, you may want to pass parameters to a relational query. For example, instead of returning
all orders of a customer, you may want to return only big orders whose subtotal exceeds a specified amount.
To do so, declare a `bigOrders` relation with the following getter method:
```php
class Customer extends \yii\db\ActiveRecord
{
public function getBigOrders($threshold = 100)
{
return $this->hasMany('Order', array('customer_id' => 'id'))
->where('subtotal > :threshold', array(':threshold' => $threshold))
->orderBy('id');
}
}
```
11 years ago
Remember that `hasMany()` returns an [[ActiveRelation]] object which extends from [[ActiveQuery]]
and thus supports the same set of querying methods as [[ActiveQuery]].
With the above declaration, if you access `$customer->bigOrders`, it will only return the orders
whose subtotal is greater than 100. To specify a different threshold value, use the following code:
```php
$orders = $customer->getBigOrders(200)->all();
```
Relations with Pivot Table
--------------------------
Sometimes, two tables are related together via an intermediary table called
11 years ago
[pivot table](http://en.wikipedia.org/wiki/Pivot_table). To declare such relations, we can customize
the [[ActiveRelation]] object by calling its [[ActiveRelation::via()]] or [[ActiveRelation::viaTable()]]
method.
For example, if table `tbl_order` and table `tbl_item` are related via pivot table `tbl_order_item`,
we can declare the `items` relation in the `Order` class like the following:
```php
class Order extends \yii\db\ActiveRecord
{
public function getItems()
{
return $this->hasMany('Item', array('id' => 'item_id'))
->viaTable('tbl_order_item', array('order_id' => 'id'));
}
}
```
[[ActiveRelation::via()]] method is similar to [[ActiveRelation::viaTable()]] except that
12 years ago
the first parameter of [[ActiveRelation::via()]] takes a relation name declared in the ActiveRecord class
instead of the pivot table name. For example, the above `items` relation can be equivalently declared as follows:
```php
class Order extends \yii\db\ActiveRecord
{
public function getOrderItems()
{
return $this->hasMany('OrderItem', array('order_id' => 'id'));
}
public function getItems()
{
return $this->hasMany('Item', array('id' => 'item_id'))
->via('orderItems');
}
}
```
11 years ago
Lazy and Eager Loading
----------------------
As described earlier, when you access the related objects the first time, ActiveRecord will perform a DB query
to retrieve the corresponding data and populate it into the related objects. No query will be performed
if you access the same related objects again. We call this *lazy loading*. For example,
```php
// SQL executed: SELECT * FROM tbl_customer WHERE id=1
$customer = Customer::find(1);
// SQL executed: SELECT * FROM tbl_order WHERE customer_id=1
$orders = $customer->orders;
// no SQL executed
$orders2 = $customer->orders;
```
11 years ago
Lazy loading is very convenient to use. However, it may suffer from a performance issue in the following scenario:
```php
// SQL executed: SELECT * FROM tbl_customer LIMIT 100
$customers = Customer::find()->limit(100)->all();
foreach ($customers as $customer) {
// SQL executed: SELECT * FROM tbl_order WHERE customer_id=...
$orders = $customer->orders;
// ...handle $orders...
}
```
How many SQL queries will be performed in the above code, assuming there are more than 100 customers in
the database? 101! The first SQL query brings back 100 customers. Then for each customer, a SQL query
11 years ago
is performed to bring back the orders of that customer.
12 years ago
To solve the above performance problem, you can use the so-called *eager loading* approach by calling [[ActiveQuery::with()]]:
```php
11 years ago
// SQL executed: SELECT * FROM tbl_customer LIMIT 100;
// SELECT * FROM tbl_orders WHERE customer_id IN (1,2,...)
$customers = Customer::find()->limit(100)
->with('orders')->all();
foreach ($customers as $customer) {
// no SQL executed
$orders = $customer->orders;
// ...handle $orders...
}
```
As you can see, only two SQL queries are needed for the same task.
11 years ago
Sometimes, you may want to customize the relational queries on the fly. This can be
done for both lazy loading and eager loading. For example,
```php
$customer = Customer::find(1);
// lazy loading: SELECT * FROM tbl_order WHERE customer_id=1 AND subtotal>100
$orders = $customer->getOrders()->where('subtotal>100')->all();
// eager loading: SELECT * FROM tbl_customer LIMIT 10
SELECT * FROM tbl_order WHERE customer_id IN (1,2,...) AND subtotal>100
$customers = Customer::find()->limit(100)->with(array(
'orders' => function($query) {
$query->andWhere('subtotal>100');
},
))->all();
```
Working with Relationships
--------------------------
ActiveRecord provides the following two methods for establishing and breaking a
relationship between two ActiveRecord objects:
11 years ago
- [[ActiveRecord::link()|link()]]
- [[ActiveRecord::unlink()|unlink()]]
For example, given a customer and a new order, we can use the following code to make the
order owned by the customer:
```php
$customer = Customer::find(1);
$order = new Order;
$order->subtotal = 100;
$customer->link('orders', $order);
```
The [[link()]] call above will set the `customer_id` of the order to be the primary key
value of `$customer` and then call [[save()]] to save the order into database.
Data Input and Validation
-------------------------
ActiveRecord inherits data validation and data input features from [[\yii\base\Model]]. Data validation is called
11 years ago
automatically when `save()` is performed. If data validation fails, the saving operation will be cancelled.
11 years ago
For more details refer to the [Model](model.md) section of this guide.
Life Cycles of an ActiveRecord Object
-------------------------------------
An ActiveRecord object undergoes different life cycles when it is used in different cases.
Subclasses or ActiveRecord behaviors may "inject" custom code in these life cycles through
method overriding and event handling mechanisms.
When instantiating a new ActiveRecord instance, we will have the following life cycles:
1. constructor
2. [[init()]]: will trigger an [[EVENT_INIT]] event
When getting an ActiveRecord instance through the [[find()]] method, we will have the following life cycles:
1. constructor
2. [[init()]]: will trigger an [[EVENT_INIT]] event
3. [[afterFind()]]: will trigger an [[EVENT_AFTER_FIND]] event
When calling [[save()]] to insert or update an ActiveRecord, we will have the following life cycles:
1. [[beforeValidate()]]: will trigger an [[EVENT_BEFORE_VALIDATE]] event
2. [[afterValidate()]]: will trigger an [[EVENT_AFTER_VALIDATE]] event
3. [[beforeSave()]]: will trigger an [[EVENT_BEFORE_INSERT]] or [[EVENT_BEFORE_UPDATE]] event
4. perform the actual data insertion or updating
5. [[afterSave()]]: will trigger an [[EVENT_AFTER_INSERT]] or [[EVENT_AFTER_UPDATE]] event
Finally when calling [[delete()]] to delete an ActiveRecord, we will have the following life cycles:
1. [[beforeDelete()]]: will trigger an [[EVENT_BEFORE_DELETE]] event
2. perform the actual data deletion
3. [[afterDelete()]]: will trigger an [[EVENT_AFTER_DELETE]] event
Scopes
------
11 years ago
A scope is a method that customizes a given [[ActiveQuery]] object. Scope methods are static and are defined
in the ActiveRecord classes. They can be invoked through the [[ActiveQuery]] object that is created
via [[find()]] or [[findBySql()]]. The following is an example:
```php
class Customer extends \yii\db\ActiveRecord
{
// ...
/**
* @param ActiveQuery $query
*/
public static function active($query)
{
$query->andWhere('status = 1');
}
}
$customers = Customer::find()->active()->all();
```
In the above, the `active()` method is defined in `Customer` while we are calling it
through `ActiveQuery` returned by `Customer::find()`.
Scopes can be parameterized. For example, we can define and use the following `olderThan` scope:
```php
class Customer extends \yii\db\ActiveRecord
{
// ...
/**
* @param ActiveQuery $query
* @param integer $age
*/
public static function olderThan($query, $age = 30)
{
$query->andWhere('age > :age', array(':age' => $age));
}
}
$customers = Customer::find()->olderThan(50)->all();
```
The parameters should follow after the `$query` parameter when defining the scope method, and they
can take default values like shown above.
11 years ago
Transactional operations
------------------------
When a few DB operations are related and are executed
TODO: FIXME: WIP, TBD, https://github.com/yiisoft/yii2/issues/226
11 years ago
,
[[afterSave()]], [[beforeDelete()]] and/or [[afterDelete()]] life cycle methods. Developer may come
12 years ago
to the solution of overriding ActiveRecord [[save()]] method with database transaction wrapping or
even using transaction in controller action, which is strictly speaking doesn't seems to be a good
practice (recall skinny-controller fat-model fundamental rule).
Here these ways are (**DO NOT** use them unless you're sure what are you actually doing). Models:
```php
class Feature extends \yii\db\ActiveRecord
{
// ...
public function getProduct()
{
return $this->hasOne('Product', array('product_id' => 'id'));
}
}
class Product extends \yii\db\ActiveRecord
{
// ...
public function getFeatures()
{
return $this->hasMany('Feature', array('id' => 'product_id'));
}
}
```
Overriding [[save()]] method:
```php
class ProductController extends \yii\web\Controller
{
public function actionCreate()
{
// FIXME: TODO: WIP, TBD
}
}
```
Using transactions within controller layer:
```php
class ProductController extends \yii\web\Controller
{
public function actionCreate()
{
// FIXME: TODO: WIP, TBD
}
}
```
Instead of using these fragile methods you should consider using atomic scenarios and operations feature.
```php
class Feature extends \yii\db\ActiveRecord
{
// ...
public function getProduct()
{
return $this->hasOne('Product', array('product_id' => 'id'));
}
public function scenarios()
{
return array(
'userCreates' => array(
'attributes' => array('name', 'value'),
'atomic' => array(self::OP_INSERT),
),
);
}
}
class Product extends \yii\db\ActiveRecord
{
// ...
public function getFeatures()
{
return $this->hasMany('Feature', array('id' => 'product_id'));
}
public function scenarios()
{
return array(
'userCreates' => array(
'attributes' => array('title', 'price'),
'atomic' => array(self::OP_INSERT),
),
);
}
public function afterValidate()
{
parent::afterValidate();
// FIXME: TODO: WIP, TBD
}
public function afterSave($insert)
{
parent::afterSave();
if ($this->getScenario() === 'userCreates') {
// FIXME: TODO: WIP, TBD
}
}
}
```
Controller is very thin and neat:
```php
class ProductController extends \yii\web\Controller
{
public function actionCreate()
{
// FIXME: TODO: WIP, TBD
}
}
```
11 years ago
Optimistic Locks
----------------
TODO
Dirty Attributes
----------------
TODO
See also
--------
- [Model](model.md)
- [[\yii\db\ActiveRecord]]